jueves, 7 de octubre de 2010

Ecuaciones


  MÉTODO DE IGUALACIÓN

Resolución de sistemas de ecuaciones por el método de igualación

1)Se despeja la misma incógnita en ambas ecuaciones.
2)Se igualan las expresiones, con lo que obtenemos una ecuación con una incógnita.
3)Se resuelve la ecuación.
4)El valor obtenido se sustituye en cualquiera de las dos expresiones en las que aparecía despejada la otra incógnita.
5)Los dos valores obtenidos constituyen la solución del sistema.




1) Despejamos, por ejemplo, la incógnita x de la primera y segunda ecuación:
 2) Igualamos ambas expresiones:



3) Resolvemos la ecuación:

4) Sustituimos el valor de y, en una de las dos expresiones en las que tenemos despejada la x:




5) Solución:


MÉTODO DE SUSTITUCIÓN

Resolución de sistemas de ecuaciones por el método de sustitución

1)Se despeja una incógnita en una de las ecuaciones.
2)Se sustituye la expresión de esta incógnita en la otra ecuación, obteniendo un ecuación con una sola incógnita.
3)Se resuelve la ecuación.
4)El valor obtenido se sustituye en la ecuación en la que aparecía la incógnita despejada.
5 )Los dos valores obtenidos constituyen la solución del sistema.



1) Despejamos una de las incógnitas en una de las dos ecuaciones. Elegimos la incógnita que tenga el coeficiente más bajo.



2) Sustituimos en la otra ecuación la variable x, por el valor anterior:
3) Resolvemos la ecuación obtenida:



4) Sustituimos el valor obtenido en la variable despejada.



5) Solución 


MÉTODO DE REDUCCIÓN

Resolución de sistemas de ecuaciones por el método de reducción

1)Se preparan las dos ecuaciones, multiplicándolas por los números que convenga.
2)La restamos, y desaparece una de las incógnitas.
3)Se resuelve la ecuación resultante.
4)El valor obtenido se sustituye en una de las ecuaciones iniciales y se resuelve.
5)Los dos valores obtenidos constituyen la solución del sistema.

Lo más fácil es suprimir la y, de este modo no tendríamos que preparar las ecuaciones; pero vamos a optar por suprimir la x, para que veamos mejor el proceso.


 



Restamos y resolvemos la ecuación:  






Sustituimos el valor de y en la segunda ecuación inicial. 


Solución:

Ejercicios de sistemas de ecuaciones

Propuestos

a)Resuelve el sistema:

b)Halla las soluciones del sistema: 


 

c) Resuelve el sistema: 


 


d) Halla las soluciones del sistema:


 

Profesor Enrrique Ibarguen

correo : enrriqueit_66@hotmail.com

2010












5 comentarios:

  1. Respuestas
    1. profe muchas gracias, por la oportunidad de conocer hacerca de esta pag que nos trae muhos beneficios, y conocimientos. le digo como usted no hay dos ....

      y hacerca de los ejercicios me gustria que colocara mas ejercicios del tema...
      gracias

      Eliminar
  2. Profe lo felicito por la manera de ser de usted para con nosotros, me tiene muy enamorado de la materia.

    Acerca de este tema le comento que se me olvidaron algunas cosillas de este tema a pesar de haberlo estudiado............


    Gracias por su ayuda....

    ResponderEliminar
  3. profe nos encanta su forma de explicar y de ser con nosotros no cambie :)cesia yineth

    ResponderEliminar
  4. profe no nos de tan duro con los ejercicios tengo un pokto de consideracioN

    ResponderEliminar